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INTRODUCTION
Population vulnerability assessments are a key tool for climate change preparedness and are
needed to guide policy makers in planning efforts to address climate change impacts. As climate
change mitigation and adaptation strategies move from legislation to regulation, there will be a
need to identify communities with elevated health risks from climate change, allowing for
regulatory structures and regional and municipal planning efforts that protect communities
vulnerable to climate change.

In California, the State has recently initiated a cap-and-trade program as a regulatory method to
mitigate greenhouse gas (GHG) emissions. As part of the regulatory process, decision-makers
must determine whether there are ways to target program benefits in a manner that maximizes
community-level health benefits from co-pollutant reductions and minimizes the likelihood that
market-based GHG reductions will produce or exacerbate disparities in public health.
Recommendations from the California Department of Public Health and other health and
environmental justice stakeholders have pointed to the need to use a portion of revenue raised
from the cap-and-trade program to promote climate adaptation programs in communities
vulnerable to climate change. Understanding existing community health risks and population
vulnerabilities to climate change at the sub-county level is a core need when planning for future
climate risks and community adaptation plans.

The California Department of Public Health’s Environmental Health Tracking Program (CEHTP)
utilized an existing environmental justice screening method (EJSM) and adapted it to two
counties likely to experience substantial climate change impacts—Los Angeles and Fresno
Counties. The EJSM method maps cumulative impacts and community health vulnerabilities at
the census tract level using data for existing land uses, air pollution sources, and demographic
traits. CEHTP supplemented the EJSM with metrics associated with climate change impacts and
adaptive capacity, such as population sensitivities (eg. elderly living alone; car access), air
conditioning ownership, green space, and ecological risks (eg. flood risk; fire risk).

The development of this Climate Change Population Vulnerability Screening Tool was made
possible through ASTHO’s Cooperative Agreement with the Centers for Disease Control and
Prevention (CDC) to Strengthen & Improve the Nation's Public Health Capacity Through
National, Non-Profit, Professional, Public Health Organizations to Increase Health Protection and
Health Equity (Award #5U38HM000454-03).

Indicators of Climate Change Vulnerability in California
The indicators chosen are consistent with the expected climate change impacts in California—
including increased extreme heat events, increased flooding, and more frequent and intense
wildfires. The indicators include air conditioning (AC) ownership, land cover characteristics (tree
canopy and impervious surfaces), access to transportation (transit and household car access),
social vulnerabilities (elderly living alone), flood risk, and wildfire risk.
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Air Conditioning Ownership
Heat waves are one of the more certain impacts of climate change, and will likely increase in
California.1 2 In the 2006 heat wave in California, 16,166 excess emergency department visits
and 1,182 excess hospitalizations occurred statewide.3 Air conditioning is an important
protective factor during heat waves.4 Low-income households and communities of color—
populations that are already face greater health risks—often have diminished access to air
conditioning, as basic adaptation tool for climate change.3 5 Adults over 50 years of age are at
increased risk for mortality during heat waves, and children may be at increased risk for
morbidity due a decreased capacity to thermoregulate.4

Impervious Surfaces and Tree Canopy
Urban heat islands (UHIs) develop in areas where buildings, roads, and other impervious
surfaces replace land and vegetative cover. UHIs increase peak energy demand, contribute to air
pollution and GHG emissions, and diminish water quality. UHIs can increase daytime
temperatures 1–3°C and nighttime temperaturesi up to 12°C.6 In addition, impervious surfaces
can increase flood risks and decrease water quality due to excessive water runoff in urban areas.
Increasing tree and vegetative cover, promoting green roofs, and innovative infrastructure (such
as cool pavements or permeable surfaces) can diminish the impacts of UHIs, reduce GHG
emissions, and reduce water runoff.6

Minority and low-income communities often live in neighborhoods with greater exposure to
heat stress. This is in part due to higher densities of settlement and increased impervious
surfaces, diminished vegetative cover, and a lack of open space.7 8 9 10 Diminished green space in
urban areas reduces a community’s adaptive capacity to climate change.

Transportation Access
Transportation access is a critical tool during heat waves and other extreme weather events,
allowing individuals to commute to cooling stations or other safe areas.10 In addition,
transportation access is a critical component in emergency preparedness, and as witnessed with
Hurricane Katrina, emergency transportation is often least accessible to low-income minority
communities.11 Access to public transit and household vehicles are each indicators of a
household’s overall mobility.

Minority and low-income populations are less likely to own cars and far more reliant on public
transportation for everyday activities, including school and work.12 And a widening spatial gap
between where people live and where people work, and the inability to get to work, impedes
socioeconomic progress in many communities of color.13 Public transit generally receives only 20
cents for every 80 cents earmarked for highways, and many states use gas tax revenue only for
highway funding, resulting in the disinvestment in transit systems in many urban communities.14

The transportation sector also generates one-third of U.S. emissions. Improving public transit
and land use patterns that support transit use and access will be essential for climate change
mitigation, and will also reap other health benefits, including decreases in pollution and
automobile collisions, was well as increases in physical activity.15 16

i Nighttime temperatures are critical for cooling during prolonged heat waves.
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Flooding
Flooding will likely increase in California due to climate change as a result of melting snowpack
and earlier water runoff. Flood risks can be compounded by impervious surfaces and wildfires—
each of which exacerbate water runoff. In addition, sea rise will contribute to coastal flooding.
Flooding has a direct health impact for communities at immediate risk during a flood, and can
also impact the safety of food and water supplies for a wider region.17 Flooding can place
individuals at risk of residential displacement, drowning, injury, illness and infections, carbon
monoxide poisoning, mold exposure, food and water contamination, and hypothermia.18

Equity issues are of importance in all disaster scenarios, as socially and economically vulnerable
populations—including elderly, children, and immune-compromised individuals—often have
less capacity to “anticipate, cope with, resist, and recover” from environmental hazards.19 Racial
and ethnic disparities play a role in all major stages of a disaster, including preparedness,
communication and response, physical and psychological impact, emergency response,
recovery, and reconstruction.20

Wildfires
Climate change is expected to increase the frequency of wildfires in California.21 22 Health effects
from wildfire include mortality, respiratory illness and eye irritations associated with smoke,
displacement from one’s home, and increased risk for erosion, flooding, and landslides.23 24 25 26

Individuals with pre-existing respiratory illnesses are at the greatest risk for adverse health
impacts associated with wildfires. In addition, populations living in urban-wildfire boundaries
are at increased risk for wildfire injury.25 Overall, a community’s adaptive capacity will impact
their ability to respond and recover to disasters such as wildfires.19

Other High-Risk Populations
Chronic disease exacerbations (CDE) account for one of the largest patient populations during
natural disasters, and medical complications can arise from the inability to deliver basic medical
services.27 Heat waves can exasperate chronic illnesses, such as cardiovascular and respiratory
diseases.28 Furthermore, existing chronic diseases can increase susceptibility to heat-related
illnesses.29 Disease outbreaks related to flooding may pose particular risks to
immunocompromised individuals.19

Individuals with limited mobility, pregnant women, the elderly (who often have multiple chronic
conditions and comorbidities), individuals with low socioeconomic status, and individuals
without insurance may be at increased risk during disasters or other emergency events.
Reducing basic human vulnerabilities will be a core strategy to minimizing climate change risk.30

DATA + METHODS
The method described here for assessing population to vulnerability offers community
organizations, local health departments, legislators, regulators, and other decision makers a
relatively simple, transparent, and flexible tool to screen for population vulnerabilities. As
described above, certain populations will be at increased risk for negative health impacts from
climate change, but these population risks will vary throughout the State. Thus, the flexibility of
this screening method can be adapted to local needs and existing data resources. This method
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can support future planning needs and guide regulatory decisions to minimize the negative
health risks and maximize health benefits in local communities with existing community health
vulnerabilities.

The EJSM developed by Sadd et al. maps cumulative impacts using a set of 23 health,
environmental, and social indicators organized into three categories: 1) hazard proximity and
land use, 2) air pollution exposure and health risk, and 3) social and health vulnerabilities. We
developed a 4th category, population vulnerability to climate change, using 8 indicators (plus a
9th indicator—sea rise—for Los Angeles County) to supplement the existing categories of the
EJSM. Our methodology was developed in accordance with the methods used by Sadd et al. Our
methodology for compiling climate change risks is explained here, and the full methodology
from Sadd et al., developed with considerable community input, is described in Appendix A (and
the results from Sadd et al. are described in Appendix B).

Climate Change Population Vulnerability Indicator
The climate change population vulnerability indicators were piloted for two counties that are
expected to be impacted by climate change—Los Angeles and Fresno County. Data were
compiled from various sources, and all data were publicly accessible online with the exception
of data on AC prevalence and Fresno transit lines (these had to be requested because the data
were not available online). Data points were summarized at the census tract level, using tract
boundaries from year 2000 Census data. Each discrete indicator for each county was ranked into
quintiles and scored 1 (low vulnerability) to 5 (high vulnerability). A final score was created by
averaging across indicator rankings for each county, then re-scoring from 1 to 5.

Data on the prevalence of central AC ownership (excluding swamp coolers and window cooling
units) were obtained from the California Energy Commission (CEC), based on the 2009
Residential Appliance Saturation Survey.31 Data from the CEC were reported at the zip code
level. Using 2009 ESRI zip codes, AC data were projected for the State using a spatial empirical
Bayes model, and then projected onto year 2000 Census tracts using an area weighted average
for Los Angeles and Fresno Counties to derive tract-level estimates for AC ownership. These
estimates were ranked into quintiles and scored 1 (high AC ownership) to 5 (low AC ownership).ii

Data on land cover characteristics were collected from the United States Environmental
Protection Agency’s (US EPA) 2001 National Land Cover Data.32 Data included tree canopy and
impervious surface characteristics. For each data set, the percent of land coverage based on
raster pixel values was averaged across year 2000 Census block groups. Using population
weighted averages, the values were summarized at the census tract level. Both tree canopy
coverage and impervious surface averages were ranked into quintiles and scored 1 (high canopy
coverage; low impervious surfaces) to 5 (low canopy coverage; high impervious surfaces).

ii All rankings were made using quintiles. Other methods to classify and rank the data—such as Jenks natural breaks—
could also be employed. Sadd et al. found that for most data points included in the EJSM, quintiles and Jenks natural
breaks produced very similar results. However, community workshops found that quintile rankings were much easier
to understand and more transparent for community stakeholders, thus Sadd et al. employed quintile rankings
throughout. We too have employed quintile rankings for a more transparent and consistent methodology.
Calculations were programmed in SAS. When rankings were tied, the default was to assign the lower score as the final
ranking (in order to not overestimate population vulnerabilities).
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Spatial data on bus and light rail lines were collected from the Southern California Association of
Governments and from the Council of Fresno County Governments (Fresno COG).33 34 All transit
lines, covering multiple transit jurisdictions and/or agencies for each county were overlaid with
year 2000 census tracts. A simple indicator of transit access was created by counting the
number of unique transit routes per census tract, without regard to transit stops, the type of
service (eg. bus or rail), or headway times. The route counts per census tract were ranked into
quintiles and scored 1 (greater number of transit routes) to 5 (fewer transit routes).

Household car access provided another measure of transportation access. The proportion of
households per census tract with at least one car was collected from year 2000 Census data. The
proportions for each census tract were ranked into quintiles and scored 1 (higher proportion of
households with at least one car) to 5 (lower proportion of households with at least one car).

The proportion of elderly living alone highlights a community vulnerable to extreme weather
events—particularly heat—and other emergencies. Data were gathered from the year 2000
Census for the percent of households within a tract consisting of one individual age 65+ years
old living alone. The census tracts were ranked into quintiles and scored 1 (fewer proportion of
elderly living alone) to 5 (higher proportion of elderly living alone).

Data on wildfire threat is available from the CAL FIRE Fire and Resource Assessment Program
(FRAP).35 CAL FIRE’s Wildland Urban Interface (WUI) data describes wildfire threat to developed
areas, ranking 100 meter cells from “little to no threat” to “extreme threat”. Categorical
rankings from CAL FIRE were assigned values of 1 (no threat) to 5 (extreme threat) and used to
calculate area weighted averages for each census tract. These averages were then ranked into
quintiles and scored 1 (lower fire threat) to 5 (higher fire threat).

Flood risks were obtained from the Federal Emergency Management Agency’s (FEMA) Digital
Flood Insurance Rate Maps (DFIRM).36 Flood risk categories include ‘areas of minimal risk’
(outside the 500 year flood zone), ‘areas of moderate risk’ (within 500 year and 100 year flood
zones), and ‘areas of increased risk’ (within the 100 year flood zone). Each category was
assigned a value of 1, 3, or 5, respectively. DFIRM maps were then overlaid with census tract
polygons for each county, and an area weighted average was calculated for each tract. These
averages were ranked into quintiles and scored 1 (low flood risk) to 5 (high flood risk).

Population susceptibility to coastal flooding due to sea level rise was included for Los Angeles
County, but excluded for landlocked Fresno County. Projections on the impact of coastal
flooding were obtained from the Pacific Institute.37 Projections from the Pacific Institute assume
a 1.4 m rise in sea level, and assess the proportion of individuals in each census tract to be
inundated by rising coastal waters. Non-impacted tracts in Los Angeles County were assigned a
zero for the proportion of population impacted. Census tracts were ranked 1 (no impact from
sea rise) to 5 (high impact from sea rise).

A summary of all climate change population vulnerability indicators is shown in Table 1. A more
detailed summary of the data used is included in appendix C. Indicators are given a score of 1
(low population vulnerability) to 5 (high population vulnerability). To create a final composite
climate change population vulnerability score for each census tract, the scores of each indicator



6

are averaged for each census tract. The average scores are then divided into quintiles and re-
ranked 1 to 5, representing a final composite score for population vulnerability to climate
change. This score is also then added as a fourth category to the EJSM developed by Sadd et al.,
for a total Cumulative Impact score of 4 to 20.

Table 1. Indicators of population vulnerability to climate change

INDICATOR ORIGINAL SPATIAL
UNIT

FINAL RANKED
SPATIAL UNIT SOURCE

Central AC ownership ESRI 2009 zip codes Census tract CEC 2009
Impervious surfaces Raster grid (30m cell) Census tract NLCD 2001
Tree canopy Raster grid (30m cell) Census tract NLCD 2001
Public transit routes Line Census tract SCAG 2011; Fresno COG 2011
Household car access Census tract Census tract Census 2000
Elderly living alone Census tract Census tract Census 2000
Flood risk Flood zone polygons Census tract FEMA (Fresno 2009; LA 2008)
Wildfire Urban Interface Raster grid (100m cell) Census tract CAL FIRE 2003

Sea rise inundation Census block Census tract Pacific Institute 2009 (using year
2000 Census data); LA only

Validation of Indicator
The climate change population vulnerability indicator was validated against emergency room
data from a recent extreme weather event—the 2006 California heat wave. Heat related
emergency room visits were compiled at the zip code level for the time period during the heat
wave (July 15 - August 1, 2006) and compared to heat related visits in a reference period (July 8-
14 and August 12 – 22, 2006). Climate change population vulnerability scores from each census
tract were averaged across host zip codes based on census tract centroids. These subsequent zip
code level vulnerability scores were then ranked into quintiles. Relative risks for heat related
emergency room visits were calculated for each vulnerability score.

FINAL RESULTS
Results from the climate change population vulnerability screening tool were very similar to
those from Sadd et al.’s EJSM methodology, showing elevated risks in urbanized areas,
particularly those areas with a high proportion of persons of color. Our climate change screening
tool also highlighted areas of risk along coastal areas of Los Angeles County, largely from risks
due to sea level rise, but also partially attributable to poor public transit, wildfire risk, and a
large proportion of elderly living alone. Utilizing the cumulative impact polygons derived from
Sadd et al. (Figure 1), attention is focused to geographical areas where people live and where
sensitive populations reside (such as schools, hospitals, and senior centers).

The final results from the climate change population vulnerability screening tool are similar to
results from the EJSM in Fresno County as well (Figure 2iii). The EJSM and climate change
vulnerability method both highlight areas of increased risk in western Fresno County and in
urbanized areas. These pockets of greater risk persist when the two methods are combined

iii The cumulative impact polygon mask is not shown here for Fresno County to enhance map visualization. It is
included, however, in Appendix D Figure D16.
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(shown in Appendix D, Figure D15). A much more detailed discussion of results can be found in
Appendix D, including additional high resolution maps of the final results.

Figure 1. Final climate change population vulnerability scores, including cumulative impact polygons, Los
Angeles County

Figure 2. Final climate change population vulnerability risk scores at the census tract level, Fresno County

We also found strong racial disparities in each county for climate change vulnerability. In Los
Angeles County, 46% of African Americans and 36% of Latinos reside in the two highest risk
categories (those tracts with scores of 4 or 5), while 30% of whites live in these high risk census
tracts (Table 2). In Fresno County, 49% of African Americans and 45% of Latinos reside in the
two highest risk categories for climate change vulnerability, compared to just 26% of Fresno’s



8

white population (Table 3). These racial disparities are similar to those found using the
environmental justice screening methodology.

Table 2. Proportion of population by race by climate change vulnerability score, Los Angeles County

Climate Change
Vulnerability

Proportion of black
population (%)

Proportion of Latino
population (%)

Proportion of white
population (%)

Proportion of total
population (%)

1 12 17 28 22
2 22 26 25 25
3 20 21 18 19
4 19 18 14 16
5 27 18 16 18

Total 100 100 100 100

Table 3. Proportion of population by race by climate change vulnerability score, Fresno County
Climate Change
Vulnerability

Proportion of black
population (%)

Proportion of Latino
population (%)

Proportion of white
population (%)

Proportion of total
population (%)

1 8 12 29 19
2 20 21 29 24
3 23 22 17 20
4 15 18 12 15
5 34 27 14 21

Total 100 100 100 100

DATA VALIDATION
Data validations for each county show some correlation between the climate change population
vulnerability scores and risks for heat related illness during the 2006 California heat wave. Los
Angeles County displays a subtle dose-response pattern. Higher climate change population
vulnerability scores show some correlation to elevated relative risk for heat related emergency
room (ER) visits during the 2006 heat wave (with the exception of elevated risk for vulnerability
category 2). In Fresno County, vulnerability category 5 has nearly twice the relative risk for heat
related ER visits as category 1, though results are mixed for categories 2-4 (Figure 3).

Figure 3. Relative risk for heat related emergency room visits during the 2006 California heat wave by
climate change population vulnerability score for Los Angeles and Fresno Counties
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Validation results are promising, but as expected, the correlations are noisy. First, the climate
change population vulnerability score includes many variables not related to health impacts
from heat waves, such as flood risk or sea level rise. Likewise, no single climate change related
event will be related to the entirety of the screening tool’s underlying data. However, it still may
be useful to assess a wide range of risks for broader planning purposes, as many emergency
response planning efforts will complement each other. Secondly, there are limited ER data
points to use for validation. Ideally, multiple heat waves could be combined or the validation
could be performed across many counties for a large heat wave. Validating any indicator tool is
a key step in assessing the tool’s accuracy and usefulness for planning purposes.

METHODOLOGICAL CHALLENGES
Manipulating and merging geospatial data across diverse data sources presents many
challenges, particularly when working with sub-county data. Sub-county data are often not
available, particularly in more rural counties. For example, there was not a reliable source of
data on existing chronic disease burden for Fresno County. For Los Angeles County, data on
disease burden were available at the sub-county level, but not at the census tract level.iv Overall,
few counties in California maintain a detailed surveillance system of local disease burden. Other
data points—such as data on transit systems—will vary from county to county in accessibility,
and will likely exist in varying degrees of quality.

There is also a substantial investment in time and skilled labor to develop a screening tool such
as this one. Data exist in a variety of geographic units, and any census tract level vulnerability
indicator will rely on data points in a common geographic unit. In order to assign an indicator
score to a census tract for some data points, moderate geospatial analyses are required.

In addition, climate change is a public health issue that will unfold over many future decades.
However, the geospatial data used here are not prospective in nature (with the exception of
data relating to sea level rise). Therefore, the tool captures existing population vulnerability to
climate change, and does not capture actual future impacts. Similarly, populations and
neighborhoods will change over time. While many of the traits that describe a vulnerable
community will be the same over time (eg. a concentration of elderly living alone; high rates of
chronic disease), the distribution of these traits will change over time. Therefore, a screening
tool can inform future planning efforts, but should be refreshed with the most current data
available, and needs a core understanding of how communities are changing on the ground.

SUCCESSES
Despite the data limitations listed above, this general approach to screening for population
vulnerabilities to climate change advances many positive practices. First, the indicator was
developed with data that were readily available on publicly accessible web sites (with the
exceptions of AC ownership and Fresno County transit lines, which were easily requested). The
implication is that other organizations could easily develop their own method with little costs

iv The Los Angeles County Department of Public Health aggregates health data into 26 Health Districts, and each
Health District is composed of 28-168 census tracts. These data were not included in the final indicator because of
their granular geographic resolution.
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outside of staff time to manipulate existing data sets and software. No original data collection
would be needed. In addition, because many of these same data sets are collected nationally,
similar screening tools could be developed in other states or regions of the country.

Second, we were able to link our climate change population vulnerability screening method with
an existing screening tool that was well vetted by many community based organizations and
other research groups in California. By employing a consistent method, we are confident that
our screening tool will be accessible and understandable to many of these same community
groups.

Finally, the method is very simple and transparent. This allows other groups to adopt this
screening tool as is, or to assign weights to certain indicators in order to best assess the risks
that are of the greatest concern in their communities.

RECOMMENDATIONS FOR BEST PRACTICES
Based on the above success and data limitations, best practice recommendations would include:
 Use publicly available data and a transparent method to increase accessibility and

adaptability by outside stakeholders.
 Developing a transparent and simple tool with no weighting allows stakeholders to use

the screening tool “as is”, or to adjust it to best fit the needs of their communities.
 Building upon existing screening tools, emergency plans, etc. limits the data workload

necessary to complete a screening tool, while avoiding duplicative efforts.
 Ideally, processed data layers could be held and maintained by a central source, such as

a state department of public health, limiting the need for skilled labor on the user end.

RECOMMENDATIONS FOR FUTURE WORK
Several steps that can be taken to improve the accessibility and usability of this screening tool,
increasing the potential for uptake by outside organizations. Recommendations include:
 Reviewing and revising the screening tool with input from local health departments,

community groups, planning groups, and other relevant stakeholders.
 Editing and analyzing data in advance for outside users would better assist stakeholders

with fewer data skills to develop their own indicator system. Ideally, the data could be
housed online and be readily available for download. Future efforts could be made to
include the data in a dynamic online mapping tool, such as Google Fusion, and allow
stakeholders to interactively change weights and/or turn data layers off and on, and
zoom in and out of specific areas. This would greatly increase accessibility.

 Bridging data regarding existing vulnerabilities/susceptibilities with projected future
climate change impacts will add to the relevancy of the screening methodology.
Currently, local climate related data projections are limited, therefore the screening tool
relies almost exclusively on existing conditions, not future projections.

 Building this work upon existing emergency and community planning tools and/or plans
may increase the relevancy of this methodology to city, county, and state health
officials, and decrease the workload needed to gather data and produce community
vulnerability assessments.



11

ACKNOWLEDGEMENTS
The California Environmental Health Tracking Program would like to acknowledge all of the
individuals and organizations that provided the data, guidance, and the technical assistance
needed to complete this project, including Jim Sadd, Justin Scoggins, Manuel Pastor, Rachel
Morello-Frosch, Bill Jesdale, Lauren Joe, Jonah Lipsitt, Matthew Heberger, Alberto Ortega,
Colleen Reid, Mike Jerrett, Glen Sharp, Douglas Morales, Jerome Blake, Lindsay Monge, and
Javier Minjares. In addition, we’d like to thank the Association of State and Territorial Health
Officials for their continued support.

PROJECT CONTACTS
Dr. Paul English
Branch Science Advisor
California Environmental Health Tracking Program
CDPH, Environmental Health Investigations Branch
paul.english@cdph.ca.gov

Max Richardson
HIA Project Manager
California Environmental Health Tracking Program
CDPH, Environmental Health Investigations Branch
max.richardson@cdph.ca.gov



12

BIBLIOGRAPHY

1 Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis.
Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on
Climate Change. Cambridge, UK/New York: Cambridge University Press.
2 Global Climate Change Impacts in the United States. Karl TR, Melillo JM, Peterson TC (eds.). Cambridge
University Press, 2009.
3 Knowlton K, Rotkin-Ellman M, King G, Margolis HG, Smith D, Solomon G, Trent R, English P. The 2006
California heat wave: impacts on hospitalizations and emergency department visits. Environmental Health
Perspectives. 2009 Jan;117(1):61-7.
4 Kovats RS and Hajat S. Heat Stress and Public Health: A Critical Review. The Annual Review of Public
Health. 2008. 29:9.1-9.15.
5 O’Neill MS, Zanobetti A, Schwartz J. Disparities by race in heat-related mortality in four U.S. cities: The
role of air conditioning prevalence. Journal or Urban Health. 2005. 82(2)191-197.
6 United States Environmental Protection Agency. “Heat Island Effect”. Updated March 16, 2011. Last
accessed March 24, 2011 http://www.epa.gov/heatisld/.
7 Harlan SL, Brazel AJ, Prashad L, Stefanov WL, Larsen L. Neighborhood microclimates and vulnerability to
heat stress. Social Science and Medicine. 2006. 63(11):2847-2863.
8 Harlan SL, Brazel A J, Jenerette GD, Jones NS, Larsen L, Prashad L, Stefanov WL. In the shade of affluence:
The inequitable distribution of the urban heat island. Research in Social Problems and Public Policy. 2008
15:173-202.
9 Landry SM and Chakaborty J. Street trees and equity: evaluating the spatial distribution of an urban
amenity. Environment and Planning A. 2009. 41(11):2651-2670.
Perkins HA, Heyen N. Inequitable access to urban reforestation: the impact of urban political economy on
housing tenure and urban forests. Cities. 2004. 21(4):291-2009.
10 Morello-Frosch R, Pastor M, Sadd J, Shonkoff S. The Climate Gap: Inequalities in How Climate Change
Hurts Americans and How to Close the Gap. 2009. Last accessed March 24, 2011
http://dornsife.usc.edu/pere/documents/ClimateGapReport_full_report_web.pdf.
11 Litman T. Lessons from Katrina and Rita: What Major Disasters Can Teach Transportation Planners.
Victoria Transport Policy Institute, Victoria, BC. 2006. Last accessed March 24, 2011
http://www.vtpi.org/katrina.pdf.
12 Pucher J and Renne JL. Socioeconomics of urban travel: Evidence from the 2001 NHTS. Transportation
Quarterly. 2003. 57(3).
13 Stoll MA. 2005. Job Sprawl and the Spatial Mismatch between Blacks and Jobs. Washington, DC:
Brookings Institution. Last accessed March 24, 2011
http://www.brookings.edu/metro/pubs/20050214_jobsprawl.htm.
14 Puentes R and Prince R. Fueling transportation finance: A primer on the gas tax. March 2003.
Washington, DC: Brookings Institution.
15 Feigon S, Hoyt D, McNally L, Monney-Bullock R, Campbell S, Leach D. Travel Matters: Mitigating Climate
Change with Sustainable Surface Transportation. TCRP Report 93. Transportation Research Board, 2003.
16 Haines A, Smith KR, Anderson D, Epstein PR, McMichael AJ, Roberts I, Wilkinson P, Woodcock J, Woods
J. Policies for accelerating access to clean energy, improving health, advancing development, and
mitigating climate change. The Lancet. 2007. 370(9594):1264-1281.
17 Hayhoe K, Cayan D, Field CB, Fumhoff PC, Maurer EP, Miller NL, et al. Emissions pathways, climate
change, and impacts on California. PNAS. 2004. 101(34):12422-12427.
18 U.S. Centers for Disease Control and Prevention. Floods. Last accessed March 24, 2011
www.bt.cdc.gov/disasters/floods/.
19 Blaikie P, Cannon T, Davis I, Wisner B. At risk: Natural hazards, people’s vulnerability, and disasters.
London, UK: Routledge. 1994.



13

20 Fothergill A, Maestas EGM, Darlington J. Race, ethnicity and disasters in the United States: A review of
the literature. Disasters. 1999. 23(2):156–173.
21 Westerling AL, Bryant BP, Preisler HK, Hidalgo HG, Das T, Shrestha SR. Climate Change, Growth, and
California Wildfire. California Energy Commission. March 2009: CEC-500-2009-046-D. Last accessed March
24, 2011 http://www.energy.ca.gov/2009publications/CEC-500-2009-046/CEC-500-2009-046-D.PDF.
22 Westerling AL and Bryant BP. Climate Change and Wildfire in California. Climatic Change. 2008. 87:s231‐
249.
23 Kochi I, Loomis J, Champ P, Donovan G. Health and Economic Impacts of Wildfires: Literature Review.
U.S. Forest Service. Last accessed March 24, 2011
http://www.fs.fed.us/rm/value/docs/health_economic_impact_wildfire.pdf.
24 Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR. Woodsmoke Health
Effects: A Review. Inhalation Toxicology. 2007. 19:67-106.
25 Greenough G, McGeehin M, Bernard SM, Trtanj J, Riad J, Engelberg D. The Potential Impacts of Climate
Variability and Change on Health Impacts of Extreme Weather Events in the United States. Environmental
Health Perspectives. May 2001. 109(2):191-198.
26 Keim ME. Building Human Resilience: The role of Public Health Preparedness and Response As an
Adaptation to Climate Change. American Journal of Preventive Medicine. 2008. 35(5):508-516.
27 Miller AC and Arquilla B. Chronic diseases and natural hazards: impact of disasters on diabetic, renal,
and cardiac patients. Prehospital and Disaster Medicine. March-April 2008. 23(2):185-194.
28 U.S. Centers for Disease Control and Prevention. Climate Change and Public Health. Last accessed
March 24, 2011 http://www.cdc.gov/climatechange/effects/default.htm.
29 Reid CE, O’Neill MS, Gronlund CJ, Brines SJ, Brown DG, Diez-Rouz AV, Schwartz J. Mapping Community
Determinants of Heat Vulnerability. Environmental Health Perspectives. November 2009. 117(11):1730-
1736.
30 Schipper L and Pelling M. Disaster risk, climate change and international development: scope for, and
challenges to, integration. Disasters. 2006. 30:19–38.
31 California Energy Commission. Residential Appliance Saturation Survey. October 2010. Last accessed
March 24, 2011 http://www.energy.ca.gov/appliances/rass/.
32 US Environmental Protection Agency. National Land Cover Data. 2001. Last accessed March 24, 2001
http://www.epa.gov/mrlc/nlcd-2001.html.
33 Southern California Association of Governments. Mapping and GIS. Last accessed March 24, 2011
http://www.scag.ca.gov/mappingGIS.htm.
34 Council of Fresno County Governments. Regional Data Center. Last accessed March 24, 2011
http://www.fresnocog.org/document.php?pid=20.
35 California Department of Forestry and Fire Protection. Fire and Resource Assessment Program. Last
accessed March 24, 2011 http://frap.cdf.ca.gov/.
36 Federal Emergency Management Agency. Digital Flood Mapping Products. Last accessed March 24,
2011 http://www.fema.gov/plan/prevent/fhm/dfm_dfhm.shtm.
37 Pacific Institute. The Impacts of Sea-Level Rise on the California Coast. March 2009. Last accessed
March 24, 2011 http://www.pacinst.org/reports/sea_level_rise/.



14

Appendix A: Environmental Justice Screening Method (EJSM)—Methodology

The method described here summarizes the methodology presented by Sadd et al. in Playing it
Safe: Assessing Cumulative Impact and Social Vulnerability through an Environmental Justice
Screening Method in the South Coast Air Basin, California.i Please refer to the full report for a
more detailed methodology.

The EJSM followed a basic 4-step geoanalytic process:
1) Developing a regional base map of hazard proximity indicators according to hazard

sources and sensitive land uses;
2) Using GIS to summarize the resulting hazard proximity indictors for each of the region’s

census tracts;
3) Coupling the resulting census tract scores with census tract level data on a) health risk

exposures and b) social and health vulnerabilities; and
4) Scoring a cumulative tract-level score based on all indicators.

Base Map
The base map was constructed using specific residential and sensitive land use classes as
classified by the California Air Resources Board (CARB).ii Doing so focused the cumulative impact
(CI) screening to areas where people live and to areas with sensitive receptors—such as
children, the elderly, pregnant women, and those with existing respiratory disease—reside
(including schools, hospitals, day care centers, and parks). Areas that are strictly industrial,
commercial, or undeveloped open space were excluded.

Residential and sensitive land use polygons were intersected with census block polygons from
the 2000 Census, creating a base map of neighborhood-sized CI polygons, each with a known
land use class and census information.

Summarizing Hazard Proximity Indicators
A set of hazard proximity indicators was attached to each CI polygon, then summarized to create
scores at the tract level. This category captures the location of stationary emission sources and
sensitive land uses based, including buffer distances to separate residential and other sensitive
land uses from environmental health hazards, based on CARB recommendations. A summary of
sensitive land uses is shown in Table A1.

i Sadd JL, Pastor M, Morello-Frosch R, Scoggins J, Jesdale B. “Playing it Safe: Assessing Cumulative Impact and Social
Vulnerability through an Environmental Justice Screening Method in the South Coast Air Basin, California”.
International Journal of Environmental Research and Public Health. 2011. 8:1441-1159.
ii Air Quality and Land Use Handbook: A Community Health Perspective; California Air Resources Board (CARB):
Sacramento, CA, USA, 2005. Available online: http://www.arb.ca.gov/ch/handbook.pdf, accessed on 30 June 2011.
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Table A1. Sensitive land use indicators
INDICATOR GIS SPATIAL UNIT SOURCE

Childcare facilities
Land use polygons Southern California Association of Government (SCAG 2005)

Buffered points Dunn and Bradstreet, by Standard Industrial Code (SIC) 8350
and 8351 (2006)

Healthcare facilities Land use polygons SCAG (2005); California Spatial Information Library

Schools
Land use polygons SCAG (2005)
Buffered points California Department of Education (2005)

Urban playgrounds Land use polygons SCAG (2005)
Senior housing Buffered points Dunn and Bradstreet, by SIC 8361 (2006)

Residential and sensitive land uses were mapped using several data sources (Table A1).
Residential land uses were more straightforward, clearly delineated in the Southern California
Association of Governments (SCAG) 2005 land use data layer. However, not all sensitive land
uses are available as polygon features. For example, some commercial and other facilities
contain childcare centers or health care facilities that are not mapped separately. Therefore,
point locations were identified from other data sources and geocoded to create a point spatial
feature layer. Any point feature that intersected with an equivalent polygon feature was
dropped. A minimum area was then assigned to each point, with the buffer selected equaling
the smallest equivalent polygon from the SCAG data layer.

Point source locations prioritized by CARB and in community scoping sessions as significant
pollution sources were then mapped. These pollution sources are shown in Table A2.

Table A2. Hazardous facilities and land uses
INDICATOR GIS SPATIAL UNIT SOURCE

Facilities in the CA Community
Health Air Pollution Information
System (CHAPIS)

Point locations CARB (2001)

Chrome-platers Point locations CARB (2001)

Hazardous waste sites Point locations CA Department of Toxic Substances Control
(2004)

Railroad facilities
Land use polygons SCAG (2005)

Line features National Transportation Atlas Database—
NTAD (2001)

Ports Land use polygons SCAG (2005)

Airports
Land use polygons SCAG (2005)
Line features NTAD (2001)

Refineries Land use polygons SCAG (2005)

Intermodal distribution
Land use polygons SCAG (2005)
Line features NTAD (2001)

Each CI polygon, consisting of either residential or sensitive land uses, was then scored. First,
buffers were constructed at 1000, 2000, and 3000 feet from the boundary of each CI polygon.
The 1000 foot buffer is the standard applied by CARB. Additional buffers of 1000-2000 and
2000-3000 feet were included to compensate for GIS inaccuracies and the reality that some
hazardous points are actually polygons.
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The number and type of hazards within these buffered areas was tabulated for each CI polygon.
Distance-weighted scoring was used, with the influence of the hazard diminishing with distance
from the CI polygon (hazards within the 1000 foot buffer were valued as 1; hazards within the
1000-2000 foot buffer were valued as 0.5; hazards within the 2000-3000 buffer were valued as
0.1). Using this method, the summed score for polygons in the Southern California area ranged
from 0-9.8.

A binary dummy variable was then added to each CI polygon depending on if it was residential
(0) or non-residential sensitive land use (1). To create tract-level hazard proximity scores, a
population weight from the underlying and intersecting census block was attached to each CI
polygon. That value was then sued to weight the scores to a census tract average score for
hazard proximity/sensitive land use. Alternatively, an area-weighting approach could have also
been used. The authors report that results were generally similar, and since the focus was on
community impacts, population-weighting was ultimately used to assign tract-level scores.

Finally, a quintile ranking from 1 (low impact/risk) to 5 (high impact/risk) was applied to finalize
the tract-level scores. More complex rankings—such as Jenks’ natural breaks, or the application
of standard deviations—were available. However, quintile rankings yielded similar results and
were simpler and more transparent to community stakeholders, so quintile rankings were used
for assigning hazard/sensitive land use scores (as well as other variables to be discussed below).

Tract-level quintile scores were then calculated for health risk exposures and social and health
vulnerabilities, as described below.

Health Risk and Exposure Indicators
The health risk and exposure indicators consist of five metrics of air pollution or health risk
estimates associated with air toxics (Table A3). The metrics are assessed at the census tract
level.

Table A3. Health risk and exposure indicators
INDICATOR GIS SPATIAL UNIT SOURCE

Risk Screening Environmental Indicators (RSEI) toxic
concentration hazard score Census tract US Environmental Protection

Agency—US EPA (2005)
National Air Toxics Assessment respiratory hazard for air
toxics from mobile and stationary emissions Census tract US EPA (1999)

Estimated cancer risks from modeled ambient air toxics
concentrations—mobile and stationary emissions Census tract CARB (2001)

PM2.5 estimated concentrations (interpolated from CARB
monitoring data) Census tract CARB (2004-06)

Ozone estimated concentrations (interpolated from CARB
monitoring data) Census tract CARB (2004-06)

Each metric above was assigned an intermediate score by ranking 1 (lowest impact) through 5
(highest impact) based on quintiles. These intermediate scores were then summed across all
health risk and exposure metrics (for a potential score ranging from 5 to 25). These totaled
intermediate scores were reranked into quintiles by tract to produce a final health risk and
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exposure score ranging from 1 to 5. As each metric is at the tract level, the CI polygons receive
scores correspondent to their host census tract.

Social and Health Vulnerability Indicators
The social and health vulnerability indicators include tract-level metrics identified in the social
epidemiology and environmental justice literature as important determinants of health
outcomes and statistically significant determinants of disparate patterns of disease distribution
(Table A4).

Table A4. Social and health vulnerability indicators
INDICATOR GIS SPATIAL UNIT SOURCE

% people of color (total population non-Hispanic white) Census tract US Census (2000)
% below 2x the national poverty level Census tract US Census (2000)
Home ownership—% living in rented households Census tract US Census (2000)
Housing value—median housing value Census tract US Census (2000)
Educational attainment—% >24 yrs with <high school
degree Census tract US Census (2000)

Age of residents—% <5 yrs Census tract US Census (2000)
Age of residents—% > 60 yrs Census tract US Census (2000)
Linguistic isolation—% residents <4 yrs in households
where no one >15 yrs speaks English well Census tract US Census (2000)

Voter turnout—% votes cast in general election Census tract UC Berkeley Statewide
Database (2000)

Birth outcomes—% preterm and small for gestational age Census tract CA Dept of Public
Health (1996-2003)

Each metric above was assigned an intermediate score by ranking 1 (lowest impact) through 5
(highest impact) based on quintiles. To ensure that social and health vulnerability scores were
not distorted, tracts with fewer than 50 people and those with fewer than six indicator values
were not scored (about 1% of all census tracts); some tracts had already been eliminated since
they did not have any residential land. To insure comparability, final cumulative scores were
calculated by dividing the sum by the number of non-missing metrics. These totaled
intermediate scores were reranked into quintiles by census tract to produce a final social health
and vulnerability score ranging from 1 to 5. As each metric is at the tract level, the CI polygons
receive scores correspondent to their host census tract.

Assigning a Final Cumulative Score
To assign a final score to the census tracts, and subsequently to the CI polygons, the three
quintile scores (the Hazard Proximity Indicator, the Health Risk and Exposure Indicator, and the
Social and Health Vulnerability Indicator) were summed to create a Total Cumulative Impact
Score that ranged from 3 to 15. These scores were attached to each CI polygon for GIS
visualization, focusing attention to residential areas and sensitive land uses.

To supplement this research, we created a fourth indicator—Population Vulnerability to Climate
Change—using a similar method to score census tracts based on quintile rankings. Our methods
and findings are described in the main body of this report.
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Appendix B: Environmental Justice Screening Method (EJSM)—Final Results

The following results discussed here summarize the findings presented by Sadd et al. in Playing
it Safe: Assessing Cumulative Impact and Social Vulnerability through an Environmental Justice
Screening Method in the South Coast Air Basin, California.i Please refer to the full report for a
more complete description of their assessment. Their methodology is explained in Appendix A.
The results shown are only for Los Angeles County (results for Fresno County were not yet ready
for publication in the article cited above).

The images below are shown for the Los Angeles County area for the calculate Hazard Proximity
and Land Use Indicator, the Air Pollution Exposure and Estimated Health Risk Indicator, the
Social Vulnerability Indicator, and finally, the Cumulative Impact (CI) Score.

i Sadd JL, Pastor M, Morello-Frosch R, Scoggins J, Jesdale B. “Playing it Safe: Assessing Cumulative Impact and Social
Vulnerability through an Environmental Justice Screening Method in the South Coast Air Basin, California”.
International Journal of Environmental Research and Public Health. 2011. 8:1441-1159.
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Hazard Proximity and Land Use Indicator
A set of hazard proximity indicators was attached to each cumulative impact polygons and
summarized to create scores at the tract level. This category captures the location of stationary
emission sources and sensitive land uses, including buffer distances to separate residential and
other sensitive land uses from environmental health hazards, based on CARB recommendations.
The final Hazard Proximity and Land Use Scores are shown in Figure B1.

Areas with high hazard proximity and sensitive land use scores tend to correspond with the
more densely populated areas, and often cluster around major industrial centers or follow
major transportation corridors. High scores are typical in areas characterized by minority, low
income populations, and adjacent to sectors of concentrated industrial activity, such as the
Ports of Los Angeles/Long Beach, the Los Angeles International Airport, and the industrial core
of Los Angeles running from the ports to downtown L.A.

Figure B1. Final Hazard Proximity and Land Use Scores for the Los Angeles County area
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Air Pollution Exposure and Estimated Health Risk Indicator
The health risk and exposure indicators consist of five metrics of air pollution or health risk
estimates associated with air toxics. The metrics are assessed at the census tract level, and
assigned to the resident cumulative impact polygons of that tract. The final Air Pollution
Exposure and Estimated Health Risk Scores are shown in Figure B2.

The geographic distribution of the Health Risk and Exposure scores is less complex, but with a
clear concentric pattern with little fine-scale variation, resulting in broad areas with a single
score. Areas with the highest scores surround heavily industrialized areas, including central and
East Los Angeles, the Alameda corridor connecting downtown to the ports along the 710
transportation corridor, and the industrial centers in Baldwin Park and east of Ontario
International Airport. Coastal and foothill neighborhoods are characterized by low scores, and
the apparent effects of the freeway system on the overall pattern are minor. These results are
similar to those from past exposure studies, suggesting that the results from the EJSM are
consistent with other screening approaches.

Figure B2. Air Pollution Exposure and Estimated Health Risk Scores for the Los Angeles County Area
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Social Vulnerability Indicator
The social and health vulnerability indicators include tract-level metrics identified in the social
epidemiology and environmental justice literature as important determinants of health
outcomes and statistically significant determinants of disparate patterns of disease distribution.
To ensure that social and health vulnerability scores were not distorted, tracts with fewer than
50 people and those with fewer than six indicator values were not scored (about 1% of all
census tracts). To insure comparability, final cumulative scores were calculated by dividing the
sum by the number of non-missing metrics. The metrics are assessed at the census tract level,
and assigned to the resident cumulative impact polygons of that tract. The final Social
Vulnerability Scores are shown in Figure B3.

The Social Vulnerability Scores reflect the well documented pattern of residential segregation in
metropolitan Los Angeles by race and class. Many of the same neighborhoods bearing the
burden of high exposure to air pollution are also those where the most vulnerable populations
are concentrated.

Figure B3. Social Vulnerability Scores for the Los Angeles County Area
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Final Cumulative Impact (CI) Scores
To assign a final CI score to the census tracts, and subsequently to the cumulative impact
polygons, the three quintile scores (the Hazard Proximity Indicator, the Health Risk and
Exposure Indicator, and the Social and Health Vulnerability Indicator) were summed to create a
Total Cumulative Impact Score that ranged from 3 to 15. These scores were attached to each CI
polygon for GIS visualization, focusing attention to residential areas and sensitive land uses. The
results of the final Cumulative Impact Scores are shown in Figure B4.

Communities near the ports and airports, as well as the Pacoima neighborhood in the San
Fernando Valley, have the highest CI scores (shown in red). Community activism around
environmental justice has occurred in these areas and these communities often receive targeted
attention from regulators and policy makers. What is perhaps more useful is that the CI map
also points to communities that do not have a record of organizing and have not brought
themselves to the attention of regulators or decision-makers, such as East Los Angeles (which is
intersected with freeways and populated with other smaller hazards), Pomona east of Los
Angeles, and parts of the Inland Valley (reaching into Riverside and San Bernardino Counties).
From the view of regulators, the map helps direct attention to places where specific attention
may be needed to address environmental health concerns not usually considered; from the
point of view of community stakeholders, the map highlights locations where residents may
need to be educated and engaged to address environmental hazards.

Figure B4. Final Cumulative Impact Scores in the Los Angeles County Area
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Appendix C: Data Sources for Climate Change Population Vulnerability Screening Tool

The data described in Table C1 were used to develop the climate change population vulnerability screening tool. Additional data were collected
on chronic disease for Los Angeles County (from a health assessment survey) and for Fresno County (from school health studies), but because
the data were so sparse and too granular for analysis, they were not included in the final assessment. Increasing the surveillance of chronic
disease conditions at the sub-county level will assist in future assessments and health evaluations.

Table C1. Data sources and definitions for data layers used to develop the climate change population vulnerability screening tool

Data Layer Data Definition
Original
Geographic
Unit

Year
Final
Geographic
Unit

Data Source Other Data Notes

AC
ownership

The proportion of
households with
central air
conditioning (does
not include window
units or swamp
coolers as central
AC units)

Data referenced
by zip code; ESRI
2009 zip code
polygons

2009 Census tract
(2000)

California Energy Commission
(CEC) Residential Appliance
Saturation Survey:
http://www.energy.ca.gov/appli
ances/rass/. Record level data
had to be requested from CEC.
Aggregate data available online.

A spatial empirical Bayes model
was performed of AC
prevalence by zip code. These
figures were converted to
census tract polygons using area
weighted averages.

Impervious
surfaces

Average percent of
each raster pixel
that is classified as
an impervious
surface

Raster data,
30m Landsat
pixel cell

2001 Census tract
(2000)

National Land Cover Database:
http://www.epa.gov/mrlc/nlcd-
2001.html

Pixel values were averaged
across census block groups,
then averaged up to census
tracts using population
weighting. Data courtesy Bill
Jesdale and Rachel Morello-
Frosch, UC Berkeley.
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Data Layer Data Definition
Original
Geographic
Unit

Year
Final
Geographic
Unit

Data Source Other Data Notes

Tree canopy Average percent of
each raster pixel
that is classified as
tree canopy

Raster data,
30m Landsat
pixel cell

2001 Census tract
(2000)

National Land Cover Database:
http://www.epa.gov/mrlc/nlcd-
2001.html

Pixel values were averaged
across census block groups,
then averaged up to census
tracts using population
weighting. Data courtesy Bill
Jesdale and Rachel Morello-
Frosch, UC Berkeley.

Transit
routes

The number of
unique transit
routes per census
tract

Line data by
county

LA: 2007

Fresno:
2003-09

Census tract
(2000)

LA: Southern California
Association of Governments
(http://developer.metro.net/)

Fresno: Fresno Council of County
Governments (requested via
email)

Processed using GIS overlays.

Household
car access

The proportion of
households with at
least one vehicle

Census tract 2000 Census tract
(2000)

US Census:
http://www.census.gov/main/w
ww/cen2000.html

Flood risk Average flood risk
as ascertained by
the Federal
Emergency
Management
Agency (FEMA)

Polygons
assigned as low,
moderate, or
high risk areas

LA: 2008

Fresno:
2009

Census tract
(2000)

FEMA:
http://www.fema.gov/plan/prev
ent/fhm/index.shtm

Area weighted averages were
calculated for each census tract.
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Data Layer Data Definition
Original
Geographic
Unit

Year
Final
Geographic
Unit

Data Source Other Data Notes

Sea rise Proportion of
population by
census tract
vulnerable to
inundation from
sea level rise

Census blocks LA: 2000

Fresno:
NA

Census tract
(2000)

Pacific Institute:
http://www.pacinst.org/reports/
sea_level_rise/

Data were recalculated for
census tracts.

Wildfire risk Average wildfires
along the wildfire-
urban interface
(WUI)

100m GRID data
assigned to
threat levels
ranging from
“little to
moderate
threat” to
“extreme
threat”

2003 Census tract
(2000)

CAL FIRE:
http://frap.cdf.ca.gov/data/frap
gisdata/download.asp?rec=wui

Area weighted averages were
calculated for each census tract.

Elderly
living alone

The proportion of
households
consisting of an
elderly individual
(65+ years) living
alone

Census tract 2000 Census tract
(2000)

US Census:
http://www.census.gov/main/w
ww/cen2000.html
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Appendix D: Climate Change Population Vulnerability Screening Tool—Final Results

Overall, results from the CEHTP Climate Change population vulnerability screening tool are
similar to those from the environmental justice screening methodology developed by Sadd et al.
This suggests that environmental justice communities that currently experience many health
disparities due to environmental hazards and socioeconomic inequities are also at greatest risk
from the effects of climate change. The results from Los Angeles County and Fresno County are
described below.

RESULTS FROM COMPONENT DATA SETS
The climate change population vulnerability indicator for Los Angeles County was devised from 9
distinct data sets, and 8 data sets in Fresno County. The results from each data set are described
and shown below.

Central AC Ownership
Data on AC ownership was the most incomplete data set in the final indicator (Los Angeles
County—74% complete; Fresno County—78% complete). In Los Angeles County, census tracts
near downtown Los Angeles and the southwestern coast have the lowest prevalence of central
air conditioning ownership (Figure D1a). In Fresno County, central AC ownership tends to be
more uniform, though there are areas with lower AC access in western Fresno and near
downtown Fresno (Figure D1b). Tracts with greater access to central AC were assigned lower
risk scores.

Figure D1a. Central AC ownership at the census tract level, Los Angeles County
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Figure D1b. Central AC ownership at the census tract level, Fresno County

Data are air conditioning access were the least complete of all indicators. Data came from the
Residential Appliance Saturation Survey. To compensate for a low sample size and incomplete
coverage, data were smoothed using a spatial empirical Bayes model. The model assumed a
beta distribution for AC prevalence and uses the weighted count of respondents with and
without air conditioning in each ZIP code as inputs. For each ZIP code i, the ‘prior distribution’ is
calculated using all of the respondents in ZIP codes adjacent to i, and the ‘posterior distribution’
is the prior distribution updated by the counts in ZIP code i itself. Zip level AC prevalence was
then transferred to the tract level using an area weighted average.

Impervious Surfaces and Tree Canopy
For both Los Angeles and Fresno Counties, the most urbanized census tracts had the lowest tree
canopy coverage (Figure D2a and D2b). Similarly, these same tracts often had a greater average
of impervious surfaces (Figure D3a and D3b), though this is less pronounced for the more rural
Fresno County. Tree canopy coverage in Los Angeles seems very binary because of the ranking
method employed (assigning tied rankings to the lowest ranking possible), and the relatively
modest range of the data. However, the map accurately conveys the location of Los Angeles
County’s most forested areas. Other users could reassign data ranks to better portray the range
of the data.viii

Tracts with high canopy coverage have low risk scores, while tracts with high impervious surface
coverage have high risk scores.

viii Maintaining a simple methodology was one goal of this research, increasing user access to the methods employed,
as well as their ability to modify the methods to suit their local needs. However, at times, such a simplistic approach
leads to minor data anomalies, such as the seemingly binary distribution of canopy coverage in Los Angeles County.
Yet the simplicity of the method also allows for others to easily modify the approach to best fit their needs. The same
methodology was used for Fresno County.
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Figure D2a. Average tree canopy at the census tract level, Los Angeles County

Figure D2b. Average tree canopy at the census tract level, Fresno County
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Figure D3a. Average impervious surface coverage at the census tract level, Los Angeles County

Figure D3b. Average impervious surface coverage at the census tract level, Fresno County

Transportation Access
Two metrics were used for transportation access: access to public transportation (measured as
the number of unique transit routes per census tract) and the proportion of households with at
least one vehicle. More urbanized census tracts and those with dense populations had lower risk
scores for access to public transit (Figure D4a and D4b). Inversely, more rural or suburban
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census tracts had greater access to personal vehicles (Figure D5a and D5b), and thus lower risk
scores.

Figure D4a. Average public transit access at the census tract level, Los Angeles County

Figure D4b. Average public transit access at the census tract level, Fresno County
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Figure D5a. Average car access at the census tract level, Los Angeles County

Figure D5b. Average car access at the census tract level, Fresno County

Flood Risk & Sea Rise
Flood risk data was compiled from the Federal Emergency Management Agency (FEMA). Areas
with the highest high flood risks are shown in red (Figure D6a and D6b). Flood risk is more
sporadic than other metrics, impacting both rural and urban areas.
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Figure D6a. Average flood risk at the census tract level, Los Angeles County

Figure D6b. Average flood risk at the census tract level, Fresno County

Sea rise is a risk unique to Los Angeles County and other coastal areas in California and
throughout the world. Similar to the data for average tree canopy, the ranking method
employed makes sea rise seem like a binary risk (Figure D7). A decision was made to include all
census tracts in the calculation for ranking sea rise risk even when they were inland census
tracts that would not be impacted, because all other metrics were ranked against all census
tracts within the county, and because sea rise will very much impact coastal communities much
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differently and more directly than inland communities. Adopters of this screening method could
choose to exclude inland census tracts from sea rise risk rankings if they wanted to have a finer
gradation of risk along coastal areas. Sea rise rankings were not calculated for landlocked Fresno
County.

Figure D7. Average risk from sea level rise, Los Angeles County

Wildfires
Data from Cal Fire was used to estimate average tract-level fire risk at the wildfire-urban
interface. Extremely urbanized areas—such as downtown Los Angeles—have low fire risk, while
moderate to high fire risks occur at the urban edge nearest to dense forest canopies (Figure
D8a). The highest wildfire-urban risks occur in eastern Fresno County near the Sierra Mountains
(Figure D8b).
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Figure D8a. Average fire risk at the census tract level, Los Angeles County

Figure D8b. Average fire risk at the census tract level, Fresno County

Elderly Living Alone
Census tracts with a relatively high proportion of elderly living alone (aged 65+ years) are at
greater risk to weather events or other disasters related to climate change. In Los Angeles
County, some rural areas and localized pockets in urban areas have a larger proportion of
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elderly living alone (Figure D9a). In Fresno County, there is come clustering south of Fresno city
center (Figure D9b).

Figure D9a. Elderly living alone at the census tract level, Los Angeles County

Figure D9b. Elderly living alone at the census tract level, Fresno County
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FINAL INDICATOR RESULTS

The data sets shown above were average for each census tract to create a final risk score for
population vulnerability to climate change at the census tract level. The results for Los Angeles
County are shown in Figure D10.

Figure D10. Final climate change population vulnerability risk scores at the census tract level, Los Angeles
County

The results from our method our similar to those from the method employed by Sadd et al.
Heavily urbanized areas tend to be at greater risk, though coastal areas (largely due to increased
risk from sea level rise) tend to be show greater population risks when employing our
methodology. Figure D10 shows the entire census tract. A layer displaying Sadd et al.’s
cumulative impact polygons can be placed over the county to focus attention to areas where
individuals reside and where sensitive populations are (Figure D11), as described in Appendix A.
Gray areas are land uses in which people do not live and sensitive populations do not reside.
This visualization of the data is more useful for understanding where human risks are most
pronounced.
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Figure D11. Final climate change population vulnerability scores, including cumulative impact polygons,
Los Angeles County

The same similarities and differences between our climate change impact screening method and
the EJSM tool can be seen when the land use mask is imposed. When the scores from the
climate change population vulnerability screening tool are added to the EJSM tool, the results
converge more closely (Figure D12), and differences between the two become more muted.
Most notably, the addition of the climate change screening tool slightly increases risk scores
along coastal communities, most notably Santa Monica. In addition, the risk in downtown areas
is reduced relative to the climate change screening method alone. The cumulative risks in areas
to the east of San Fernando and in northern Los Angeles County are also reduced. Yet the
overall similarities in outcomes between the two methods suggest that environmental justice
communities in Los Angeles County also face the greatest challenges in terms of climate change
preparedness.
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Figure D12. Cumulative risk scores from the climate change population vulnerability and EJSM screening
tools, Los Angeles County

The final results from the climate change population vulnerability screening tool are similar to
results from the EJSM in Fresno County (Figure D13). Results for Fresno from the Sadd et al.
methodology were not ready for their previous publication. However, the researchers have
recently completed computing EJSM scores for Fresno County (Figure D14). Each method shows
areas of increased risk in western Fresno County and in urbanized areas. These pockets of
greater risk persist when the two methods are combined (Figure D15). A similar land use mask
was employed for Fresno County to highlight where people live and sensitive populations reside.
An example is shown in Figure D16. Such a map would be useful for planners and local health
officers implementing local projects or policies.
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Figure D13. Final climate change population vulnerability risk scores at the census tract level, Fresno
County

Figure D14. Final EJSM risk scores at the census tract level, Fresno County
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Figure D15. Cumulative risk scores from the climate change population vulnerability and EJSM screening
tools, Fresno County

Figure D16. Cumulative risk scores from the climate change population vulnerability and EJSM screening
tools, Cities of Fresno and Clovis
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RACIAL DISPARITIES

Stratifying the climate change vulnerability scores by race shows clear racial disparities exist in
Los Angeles and Fresno County. In Los Angeles County, 46% of African Americans and 36% of
Latinos reside in the two highest risk categories (those tracts with scores of 4 or 5), while 30% of
whites live in these high risk census tracts (Figure D17). The EJSM method by Sadd et al. shows
similar racial disparities by risk score, with a higher proportion of African Americans and Latinos
residing in high risk areas (Figure D18).

Figure D17. Percent of population by race by climate change vulnerability score, Los Angeles County

Figure D18. Percent of population by race by EJSM score, Los Angeles County
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In Fresno County, 49% of African Americans and 45% of Latinos reside in the two highest risk
categories for climate change vulnerability, compared to just 26% of Fresno’s white population
(Figure D19). Again, the results are similar to those from Sadd et al. Using the EJSM method, a
higher proportion of Latinos and African Americans reside in higher risk census tracts compared
to whites (Figure D20).

Figure D19. Percent of population by race by climate change vulnerability score, Fresno County

Figure D20. Percent of population by race by EJSM score, Fresno County


